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Field driven thermostated systems: A nonlinear multibaker map
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In this paper we discuss a simple deterministic model for a field driven, thermostated random walk that is
constructed by a suitable generalization of a multibaker map. The map is a usual multibaker, but perturbed by
a thermostated external field that has many of the properties of the fields used in systems with Gaussian
thermostats. For small values of the driving field, the map is hyperbolic and has a unique Sinai-Ruelle-Bowen
measure that we determine analytically to first order in the field parameter. We then compute the positive and
negative Lyapunov exponents to second order and discuss their relation to the transport properties. For higher
values of the parameter, this system becomes nonhyperbolic and possesses an attractive fixed point.
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[. INTRODUCTION lations between the rate of entropy production, the zero-field
diffusion coefficient, the drift velocity, and the sum of the
In the past several years a great deal of attention has beéiyapunov exponentg2,10,12,13 We conclude with a brief
devoted to computer and analytic studies of the chaotic prorglscu_ssmn of the transition to nonhyperbollc b_ehawor as the
erties of fluid systems subjected to external fields and tdi€ld increases beyond a certain value, and discuss the con-
Gaussian thermostats which maintain a constant kinetic gf¢cton of our model to other types of field driven multibaker

total energy in the system, in the presence of the fig|d]. maps[11-13.

The interest in this subje_ct stems not only _f_ror_n the method’s Il THE NONLINEAR MULTIBAKER MAP

value as a means of simulating nonequilibrium flows and

computing their properties, but also because there is a con- We begin by considering a simple multibaker map that
nection between transport properties, nonequilibrium flucacts on the X,y) coordinates of particles, and that models a
tuations, and the underlying microscopically chaotic properfandom walk on a one-dimensional lattice of unit spacing.
ties of the fluid. This connection has been explored fromhe map, defined o x[0,1]?, replaces then,x,y coordi-
computationa[3—8] and analyti{9—13 points of view. The ~Nates of a particle byl o(n,x,y)

purpose of this paper is to describe a model system in which y
the transport and dynamics of a thermostated system can be n—1,2x, ik 0=x<1/2
studied in great detail, and in which one can explicitly con- Mo(n,X,y) = )

struct the Sinai-Ruelle-Bowe(SRB) measurd 14] and de-
scribe such properties as the transition from hyperbolic to
nonhyperbolic behavior, and related phenomena. These
properties have been explored in previous wid®,15, but ~ Heren represents the position of the random walker on the
have not yet been studied in great detail, due either to théne andx,y can be seen as bookkeeping variables keeping
complexity or to the simplicity of the models treated up till track of the deterministic cause of the apparently random
now [11-13. The model discussed here allows one to gainwal_k- The subscript, zero, dv indicates that this is the map
some insights into the general class of properties of thermgd€fined without an external field, which we introduce
stated systems, while keeping the analytical and computgehOrtly: The mapM, is time-reversal symmetric. That is,
tional difficulties to manageable proportions. It is one of thet€ré exIsts an involution operat@rwhich acts on the,y
few cases known so far where one can check some of t riables, but not on the box index, and is given by

: F(x,y)=(1—-y,1—x), with T>=1, wherel is the identity
?neondeerlal properties of thermostated systems on a Specmoperator in R2, and such that TeMgT(n,x.y)

The model we consider is a variant of the multibaker:Mal(n’X’y)' If we consider periodic boundary conditions,

maps studied by Tasaki and Gaspdid—18, which are the invariant measure is uniform and has Lyapunov expo-
deterministic models for the diffusion of a particle on a one-"€NtS

dimensional lattice. The map considered here has, in addi- ANO=_\O=|n2 )

. .. . . . + - .

tion, an external driving field which is constructed so as to

model the effect of a thermostated electric field on charged Next we suppose that the particles are also acted upon by
particles in a two-dimensional setting. We present the moded thermostated electric field, whose action we now model.
and then calculate the chaotic properties at small values ddur final map will then be a compositiofio be explained
the external field. We obtain an expression for the stationarpelow) of the field map(3) with the multibaker mag1).

state SRB measure to first order in the applied field, and the The modeling of the field map can be done by considering
positive and negative Lyapunov exponents to second order ithe action of a thermostated electric field ofcantinuously

the applied field. This allows us to verify the interesting re-moving particle, where the thermostat maintains a constant

y+1
n+1,2x— 1,—2 . 1/2=x<1.
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kinetic energy for the particle. The equation of motion of a 2 X
particle in such a field is given biy,2] Pa(X)= —arcta tar( 7) e . ©)
dﬁ_ E E'ﬁ > We note the following property:
FTEE F p.
Pa(X)=1=@_,(1=X), 4
If 6is the angle that the velocity of the particle makes with .. .. . N
respect to the direction of the electric field, th&changes in which implies the time-reversal symmetry
time as#= — qEsind/p, with solution To(@a,D)oT(X,Y)=(X,¢,1(Y)), 5)

0(0) gE whereT is defined above, and the operatgr,(1) acts on a
0(t)=2arcta{utar< T) exp{ - ?t) } point (x,y), say to producée,(X),y), and we have denoted
the identity operator acting on tlyecoordinate byl. We also
A time discretized version of this equation is obtained bypoint out the fact that the map,(x) has the property, under
defining an angle at discrete timég= wx,, and lettingx, successive iterations, that

satisfy
2 X
Xne1= ;arcta ta >

Here x,€[0,1] and a= (qE/p) 7, with 7 the time step,
which for the time being we set equal to unity. Note that we
restricted our attention to anglés=[ 0,7 ], taking advantage

©a(@a(X))=2,(X), (6)

which shows that the field map is a good discretization of a
continuous process in time.

We can now construct the following nonlineéor field
driven) multibaker map as a time-reversal symmetric com-
position of the multibaker mafl) with the field map(3) :

e—a

of the symmetryd— — 0. | Ma(nXY)= (1L el Mee(L e, D(NXY), ()
We now introduce a one parameter family of maps of the
unit interval onto itself by which takes the explicit form
|
y 1
n_l!ZQDa(X)!QDa E ’ O$X<<P—a E )
Ma(n,X,y)= y+1 1 C)
n+1,2¢,xX)—1,¢, | ¢-d3 =x<1.

The leftmost identity operators in each of the field maps in(#pact on the cell index and express the fact that the field

maps do not change the value of the cell index. Only the baker map moves points from one cell to the next. We refer to Fig.
5 at the end of this paper for an illustration of the projectiorivigf along thex interval. The time-reversal symmetry of this
mapTeM o T(x,y)=M_(x,y), with T defined as above, follows straightforwardly from E®. and (5).

Ill. HYPERBOLIC REGIME
As long asa<In(2), M, is expanding along the direction, i.e.,

IM .«
oX

>1,

so that standard theorems guarantee the existence and uniqueness of an SRB [h@ladnrthis section we solve for the
invariant density and give an analytic expression of this invariant measure.

We want to find the stationary eigenfunction, equivalently, the invariant depsityx,y), of the Perron-Frobenius operator
for a system with periodic boundary conditions. This implies ghdbes not depend upon but only onx,y and satisfies the
equation

X X 1
wia(z)w'—a(y)p(qo—a(z),ZQD-a(y)), 0$y<%(§),
p(X,y)= 9

Pa

x+1| ( x+1 ) 1) _
- el (Y)ple—o — 20 o(Y)=1], @, 7| <y<1,

where the prime denotes the derivative with respect to the argument. We solve this equation by expanding the density in
powers of the field parameter,




366 T. GILBERT, C. D. FERGUSON, AND J. R. DORFMAN PRE 59

p(x,y)=1+ap(x,y)+a?p@(x,y)+0(a?). (10

For smalla, the low field regime, we expand, in powers of the field parameter:

2

0. (X)=X— —sin(mX) + ——sin(2mx) + 0( a?). (11)
T 4ar

The first order correction to the invariant density is found by decomposing it in Fourier modes:
p<1)(><,y)=k20 [ay(y)cog 27kx) + by (y)sin(2mkx)]. (12)

Inserting the expansion far, Eq.(10), and Eq.(12) in Eq. (9), we can find the,'s andb,’s. However, as a result of the phase
space contraction, the density is a singular function ofytheordinate so that we cannot representafis andb,’s in terms

of standard functiong20]. For our purposes, it is enough to perform a partial integration of the density aloygdihection
SO as to obtain continuous coefficients for the Fourier modes. We thus define

y y
A= [(ady, By = [ buyay (13

which, to lowest order inx, are found to satisfy the recursion relations

1 2y 1 1 By (2y) 1
5Po(2y)+ —+ —sin(my) + ;k%dd o O=y<s,
Roan=) 4 2(1-y) 1 1 Bo(1) Bu(2y-1)| 1 19
_ _ . (2y—
=Ay(2y—1)+ + —sin(wy)+ — — , —=sy<l1
5A0(2y—1)+ ———+ —sin(my) WK%M( " o 5=y
, L p(2y) Y 2 K g (2y) 0=y<~
= - — ———B(2y), <y<-,
2 T ey miake—k2 Y =3
Ay o= (15
< 1-y 2 K’

1 1
E[AZk(1)+A2k(2y_1)]_ [By(1)— By (2y—1)], §$y<1-

(A= 1/A) Ty Ak~ K2

\

r

s (2y) + aky K LN (2y) 0=y<=
= ——t— 2, ———Au(2y), <y<-,
2o T e yay w g a2 K Y=2
Bk(y): (16)

1[B (1)+Boy(2y—1)]+ aky + ak [Av(L)—A(2y—1)] L 1
= - _—t— ——[A (1) A (2y—1)], =<y<l.
5 LBk 2k 2y TAKe— 1) | T AKP— K2 K kr(2y > =Y

\

In particular, fory=1, we findA.(1)=A, (1) andB,(1)=B,(1)+ 4k/w(4k?>—1/4) , whose solutions are, respectively,
B 4 i 2"k
A(D)=0, Bu(1)=—2, PETISIE PP (17

Therefore the projection gi*)(x,y) along thex direction is a smooth function of given by

pP(x)= flp”)(x,y)dy= kEl Bi(1)sin(2mkx). (18)
0 =

To compute the coefficients,(y) andB,(y) numerically, we need to select a cutoff vakig,, of k beyond which we set all
the coefficients to be zero. In Figs. 1-3, we shAy and the first fiveA,’'s and B,’s, respectively, computed by setting
Kmax=250.

Although we have found the invariant density only to first order, we can now compute the corrections to the Lyapunov
exponents to second order én For\ . , we obtain
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1 1
:f de dyp(x,y)In[2¢/(x)],
o Jo

=In(2) - a? Jpr“)(x)cos(wx)),

~In(2)— ( E kBk(l)),

TR=1 4Kk>

=\ 9-?(0.666 1513107 7). (19

Here we used the normalization condition fg(x,y) which requires that
1 1
f dxf dyp@(x,y)=0. (20
0 0
To compute\ _, we need the full expression pf), Eqgs.(12)—(16):

1 1 1 1
sero |+ 1 o ayoryml Jertiy o).

¢ o(112)

¢ o(112) 1
)\_=j dxf dyp(x,y)In
0 0

2 2 1/2
—(p_a(1/2)(—ln(2)—7—7)—af de' dyp,(x,y)cog wy/2)

20 o? 5[t 1 .
+[1—go_a(1/2)](—ln(2)+7—7 +a L/zdxfo dypi(X,y)sin(wy/2) ,

1 4 1 B, (1) 1 .
=\ 042 Z+?+;k0dd kk %fo dyA(y)[sin(y/2) + cog wy/2)]
Lt f lo|y2 k(y)[sm(TryIZ) cos{nyZ)]) (21)
2)o Kot

It is not straightforward to compute these integrals nu-for 0<y<1/2, andA,(y) is even with respect to 1/2, viz.,
merically because of the irregularity of the functiofigh— A (y)=A(1-Y).
(16) and the number of different terms involved in their ex- We can now find an upper bound on the magnitude of
pressions. We can nevertheless estimate @4 within  f,(y). IndeedA.(y) is everywhere negative and is minimal
some good accuracy. To this purpose, we proceed by a nurat y=1/2 (see Fig. 2 Thus
ber of algebraic manipulations.

We first substitute foB,(y) the expression 1

|A gz
B(y)=yBy(1) +kf(y), (22

where the function$,(y) are found to satisfy the relations Now, f,(y) is negative between 0 and 1/2 and reaches its
minimum aty=1/4. Thus, from Eqs(23) and (25),

4
f (V) =fa2y)+ = 2 ———Au(2y), (23
K 2k T K2 — K2 It = froe 2 2 Z 1
7T k' odd 4k2—K'?

. + o B(1)|. (29
16K2—1  (oggdk2—k'2 <

for Osy<1/2, andf,(y) is odd with respect to 1/2, viz.,

fi(y)=—fi(1-y). 4 4k’
In terms of these, we have X Toke—1 + 2 K K2
- k’ odd -

Bk,(1)> . (26)

1 2 12
AY) = 5 Aa(2y) — => — > f(2y) Next, we rewriteAq(y), Eq. (14), in terms of its Fourier
T odd 4k“—k modes:

y 4 4k’

J’_ —
| 16k2—1 k%dd 4k?—k'2

B (1) | (24 Ao(y)= %I(ZO Gycog 2mky) + Hsin(2mky).  (27)
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y
FIG. 1. Ag(y) computed with a cutoff valuk,,,=250.
We find
4 B,/ (1
GO:1+ —+ 2 k ( ) y
k' odd K’
4 B/ (1) 4
Gi=~ 52| 1T Y o 2
Tk K odd K m(4k —1)
1
+2 > | dyfu(y)cogkmy), kodd,
k' odd 70
G 1G 4 k (28
== - even,
27 qake-1)
H=0, k odd,
4 Bk (1) 1 .
Hi=— — —+2 > | dyfi(y)sinkmy),
TR odd K k' odd 40
k even.
0.000
-0.020 | .
&)
Z
0040 f —— k=1 B
"""""" k=2
- k=3
——- k=4
—-— k=5
-0.060 . . . .
0.0 0.2 0.4 0.6 08 1.0

¥
FIG. 2. The first fiveA,(y) computed with a cutoff valu&,
=250.
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FIG. 3. The first fiveB,(y) computed with a cutoff valu&,,,
=250.

Therefore and with the help of Eq&5) and (26),

J Sy S Bkliy) [sin(7y/2) — cog 7y/2)]
0 k odd

2[4 B.(1)
—;(;‘1)%, "

1
+ > | dyf(y)[sin(my/2)—cog myl2)],

k odd JO
2[4 Bk(1) 4 max
_;(;_1>k§m O ;(ﬁ—l)fk, ) (29)

and

1
fo dyAg(y)[sin(my/2) + cog my/2) ]

4G, 4 & Gy

m?  mw?k=116k*—1

46 4y (g1 G
a2 7?2 Kodd \ Ai=0 2 22n+4K2_q
% n-1
1 gon-ix
+ - t
ngl j=0 21 p2n+4y2_q
4 4 g (g1 o
772 77_2 Kodd \ n=0 2n 22n+4k2_1
o n-—1

1 gan-ik
A=1 j=0 2] 22n+4y2_q

et

2 Kodd n=0 2n71 22n+4k2_1 Wk' odd k'

(30

o]

where we introduced the notations
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0.010 - . . . cess which should, in a macroscopic limit, be described by a
suitable Fokker-Planck equation with a drift term, represent-
ing the effect of the external field. The macroscopic limit is
taken by scaling the space and time parameters, and then
taking an appropriate scaling limit. This procedure was de-
0.000 3 . scribed for models of this type by Tevolimer, and Brey-
mann[11,17, and here we simply outline the process.

We have previously introduced the time stepand we
replace the timesandt+ 1 in the Frobenius-Perron equation
by Tr and T+ 7, respectively, wherd>1. Similarly, we
—-0.010 + . scale the length of the elementary ceflis,by making them
have a lengtta on a side. We then replaceandn+1 in the
Frobenius-Perron equation ya and Na+a, respectively,

0.005 - a

-0.005 - a

@ 4 @
AL

—0.015 - | whereN>1. Also thex andy variables have to be scaled by
the factora and [ by a2, as well.
_0.020 L ! ! ! - We can now proceed to the derivation of the Fokker-
0.00 0.02 0.04 0.06 0.08 0.10

Planck equation from the Frobenius-Perron equation for

pi(n,x,y). We obtain a Fokker-Planck equation for a field
FIG. 4. A comparison of the values of the second order correcdriven random walk by considering the difference

tions of the Lyapunov exponents computed from ES) and(21) W5, (Na)—Wr.(Na).

(solid lineg and by following a trajectory of 10 000 steps for ten  Using Eqgs.(8) and (9), we find

values ofa ranging from 0 to 0.1(X's correspond to the positive

Lyapunov exponent}'s to the negative one

[+

fw_au/z)d
Wi, (Na)= Xpr-(Na+a,x
G(O): B Bk/(l) _ (31) Tr+ ( ) o o7 ( )
k 21,2 . / 2_1y'
ek K odd K w(4k—1) 1
+ dxpt(Na—a,x),
and La<1/2) pr+ )
4 1
gon-i=— (320  where pr,(Na,x)=[odypr(Na,x,y). We have scaledk

2(n—j+1),2_ ’ . . .
w25k -1) andy so that their values are in the intervak®, y<1.

Grouping Eqgs.(29) and (30) together with Eq(21), we Therefore
can give an estimate of the second order correction to the
negative Lyapunov exponent by performing straightforward Wi, (Na)—W._(Na)
numerical summations: we find

¢ 4(112)
0 _ 2 = dX pt,(Na+a,x)—pr(Na,x
A =\9—?[1.9937+0(0.04]. (33 fo Lo+ )= prANax)]
In Fig. 4 we compare the valugd9) and (33) of the 1
second order corrections to the Lyapunov exponents to nu- + L (de[PTT(Na— a,X) = p1Na,x)].

merically computed ones.
In the next section we take the macroscopic limit and (395
relate the sum of the Lyapunov exponents to the drift veloc-

ity and the zero-field diffusion coefficient. Expanding pr.(Na+ax) about pr.(Nax) and

W+, (Na) aboutWs (Na), respectively, and introducing

IV. MACROSCOPIC LIMIT the coordinateX=Na, and the timg¢=Tr, we get

In order to take the macroscopic limit of this diffusive
process, we consider the functig(n) which is defined to MW(X) a d
be the total probability of finding a particle in cellat time =
t, and is given by

P o(1/2)
f dxp(X,X)

ot 7 X 0

1 (1 Jl B (X0 | + 82 1 dPW(X) N
= — Xp(X,X) | +@% o ———— 4 - - -
W;(n) fo de'O dyp(n,x,y), (34 P12 Pt 27 ox2
i ime- [ - — OW(X)  a? PPW(X
where p,(n,x,y) is the time-dependent density of the ex — o) i )+_ ( )+._. (36

tended version oM, and whose time evolution is derived
by generalizing Eq(9) in a straightforward way. Once we
have eliminated the internal variable,¥), we no longer

have a deterministic process, but instead have a random prihe drift velocity is given by

axX 27 9X?
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al d
X

T

e_4(112) 1
- f dxp(X,X) + J prt(X,x))
0 12)

¢ (1

vi(X)= FRw
(ﬁ) fo dxpt(xix)

(37

To proceed further, we need to take the macroscopic limisince we have been able to calculate all of the relevant quan-

wherea—0, 7—0, a?/2r=D, andv is finite and nonzero. lities. The phase space contraction rate is given by
This implies that the electric field becomes infinite aa™ 2. )

For long timegt we are going to replace the drift velocity _ _ L, a
in the Fokker-Planck equation by its stationary state value. (A4 +A-)=[2.660(0.09] T’ 42
Supposs is large enough that we are nearing a steady state.
Then in the limit of smalla and 7, we may write the solution and Egs(41) and(42) give consistent values. Thus our field
of the Frobenius-Perron equatign(X,x) in Eq. (37) as  driven random walk model has a well behaved macroscopic
W,(X)p(x) wherep(x) is determined by an equation easily limit, provides an example of the correspondence between
obtained by integrating the equati®® overy, Eq.(18), and  the macroscopic and microscopic relations for entropy pro-
W,(X) is close to, but not quite, a constant. Then tke duction, and is analytically tractable.
dependence drops out in the expression for the drift velocity,
and we find that the stationary state drift velocity is simply V. CONCLUSIONS AND DISCUSSION

(assuming that the density is normalized to a unit)cell ) o )
In this paper we have shown that it is possible to construct

o_ (112 1 a nonlinear version of the multibaker méipe. it shares the
- fo pr(x)+f 0 dXP(X))- (38  topology and time-reversal symmetry of the original multi-
-all2 baker but is not piecewise lingahat simulates the action of

Equation(36) is the Fokker-Planck equation correspond- " external field on a diffusive process. The field curves the
ing to a stochastic diffusive system with a drift. In the case Opranche_s of the map and is rgspon3|ble for the phasg space
periodic boundary conditions that we consider here wecontraction that induces a stationary state on an attréittor
know from thermodynamics that the rate of entropy produc-fIIIS Fhe wh.ole phase space but its mformaﬂon dimension

14] is fractional as a consequence of the difference between

tion in the stationary state is due solely to the existence of 4 ord . he L
current driven by the external field and for which the rate oftn€ second order corrections to the Lyapunov expor)yents
One of the motivations of this work was to provide an

entropy production is given by analytically tractable map which shows some of the proper-
BY: ties of the periodic Lorentz gas where the particle moves
o= —, (39 among the scatterers in a thermostated electric field. The

D structure of our nonlinear baker map is sufficiently simple
that we were able to compute analytically the stationary state
SRB measure using a perturbation expansion in the field pa-

— a
U= —
T

N

where the zero-field diffusion coefficient for this process is
D= a?/27. We mention that in the limit of zero field, and
periodic boundary conditions, the entropy production in the

stationary state vanishes, since in this limit, there is no ' ' ',/i /1"
steady state drift, and the distribution functigiiX,x) is / ,’ |
constant both iX and inx. 08 L yaw ' ,//_
With the stationary state densifl8) computed in the / E/ ¥/ ,’
preceding section, the drift velocitB8) is found to be / / : /1
0.6 4 /i L]
.0 r 4 I A
—  2aa B(1)| aa « AL AN
=— 1+ > =—-—(1.15217813. 2 s o Vo
mT Koad k T ;d e 7/ 1 'y
,l /7 ] I /l I
(40 0.4 / /,’ E =/ /I ]
s s
Hence, the entropy production rate is, E(&9)—(40), Nyl E ,{ ,’
Il s
) 02 - L /// i /’I ] ,[ )
o b/ !
7=2.65502885— (41) /e A
T “d l;’l I/
1 1 1 l 1
%0 0.2 0.4 06 0.8 1.0

According to the usual arguments for thermostated systems
one expects that the rate of phase space contraction given by
the negative of the sum of Lyapunov exponents should be FIG. 5. M, projected along the interval for a=0.5 (dashed
equal to the macroscopic rate of entropy producf®13. line), In(2) (solid line), and 1 (long-dashed line The origin goes
For our case, it is possible to verify this relation analytically, from repelling to attractive a& increases above In(2).

X
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rameter. This allowed us to compute the positive and negathe chain sustains a stationary state with an almost linear
tive Lyapunov exponents, whose values we showed are comradient of density. As we showed in another pajis],
sistent with that of the drift velocity. We also were able to some other models of field driven multibaker maps fail to
compute the irreversible entropy production and showed thatave this behavior in a large system limit and, as a conse-
it is indeed given, apart from some factors, by the sum of thejuence, do not have physically relevant thermodynailies
Lyapunov exponents. entropy production rate depends on the choice of the parti-
We remark that at values of the field parameter larger thation).
In(2), the map loses its hyperbolicity. This is illustrated in  Another interesting perspective will be to calculate non-
Fig. 5. In fact (0,0) becomes an attractive fixed point of thelinear corrections to the diffusion coefficient so we can go
reduced map, which means that, on the lattice, all particlebeyond the linear response theory. As shown by other au-
eventually move ballistically around the ring towards de-thors[18], relevant tools for this study are the zeta functions
creasingn’s. The casex=In(2) is of particular interest. In- and Pollicott-Ruelle resonances. Computing the first order
deed, the origin is an intermittent fixed point and, as a concorrections to the eigenvalue spectrum of the Perron-
sequence, points can spend arbitrary long times in ité§robenius operator will be an important step towards under-
vicinity. This can be seen to give rise to anomalous diffusionstanding nonlinear diffusion for this model.
[21,22.
We _regard the mod_el given here as the simplest of_a class ACKNOWLEDGMENTS
of similar models which can be generated by varying an
additional parameter modeling a magnetic field. Elsewhere The authors wish to thank Brian Hunt, Celso Grebogi,
[23] we will describe this class of models in much more Jurgen Vollmer, Tamas TeRainer Klages, Edward Ott,
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