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Field driven thermostated systems: A nonlinear multibaker map

T. Gilbert, C. D. Ferguson, and J. R. Dorfman
Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20

~Received 7 July 1998!

In this paper we discuss a simple deterministic model for a field driven, thermostated random walk that is
constructed by a suitable generalization of a multibaker map. The map is a usual multibaker, but perturbed by
a thermostated external field that has many of the properties of the fields used in systems with Gaussian
thermostats. For small values of the driving field, the map is hyperbolic and has a unique Sinai-Ruelle-Bowen
measure that we determine analytically to first order in the field parameter. We then compute the positive and
negative Lyapunov exponents to second order and discuss their relation to the transport properties. For higher
values of the parameter, this system becomes nonhyperbolic and possesses an attractive fixed point.
@S1063-651X~99!03801-5#

PACS number~s!: 05.45.Gg, 05.70.Ln
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I. INTRODUCTION

In the past several years a great deal of attention has
devoted to computer and analytic studies of the chaotic p
erties of fluid systems subjected to external fields and
Gaussian thermostats which maintain a constant kinetic
total energy in the system, in the presence of the field@1,2#.
The interest in this subject stems not only from the metho
value as a means of simulating nonequilibrium flows a
computing their properties, but also because there is a
nection between transport properties, nonequilibrium fl
tuations, and the underlying microscopically chaotic prop
ties of the fluid. This connection has been explored fr
computational@3–8# and analytic@9–13# points of view. The
purpose of this paper is to describe a model system in wh
the transport and dynamics of a thermostated system ca
studied in great detail, and in which one can explicitly co
struct the Sinai-Ruelle-Bowen~SRB! measure@14# and de-
scribe such properties as the transition from hyperbolic
nonhyperbolic behavior, and related phenomena. Th
properties have been explored in previous work@10,15#, but
have not yet been studied in great detail, due either to
complexity or to the simplicity of the models treated up t
now @11–13#. The model discussed here allows one to g
some insights into the general class of properties of ther
stated systems, while keeping the analytical and comp
tional difficulties to manageable proportions. It is one of t
few cases known so far where one can check some of
general properties of thermostated systems on a spe
model.

The model we consider is a variant of the multibak
maps studied by Tasaki and Gaspard@16–18#, which are
deterministic models for the diffusion of a particle on a on
dimensional lattice. The map considered here has, in a
tion, an external driving field which is constructed so as
model the effect of a thermostated electric field on char
particles in a two-dimensional setting. We present the mo
and then calculate the chaotic properties at small value
the external field. We obtain an expression for the station
state SRB measure to first order in the applied field, and
positive and negative Lyapunov exponents to second orde
the applied field. This allows us to verify the interesting r
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lations between the rate of entropy production, the zero-fi
diffusion coefficient, the drift velocity, and the sum of th
Lyapunov exponents@2,10,12,13#. We conclude with a brief
discussion of the transition to nonhyperbolic behavior as
field increases beyond a certain value, and discuss the
nection of our model to other types of field driven multibak
maps@11–13#.

II. THE NONLINEAR MULTIBAKER MAP

We begin by considering a simple multibaker map th
acts on the (x,y) coordinates of particles, and that models
random walk on a one-dimensional lattice of unit spacin
The map, defined onZ3@0,1#2, replaces then,x,y coordi-
nates of a particle byM0(n,x,y)

M0~n,x,y!5H S n21,2x,
y

2D , 0<x,1/2

S n11,2x21,
y11

2 D , 1/2<x,1.

~1!

Heren represents the position of the random walker on
line andx,y can be seen as bookkeeping variables keep
track of the deterministic cause of the apparently rand
walk. The subscript, zero, onM indicates that this is the ma
defined without an external field, which we introduc
shortly. The mapM0 is time-reversal symmetric. That is
there exists an involution operatorT which acts on thex,y
variables, but not on the box indexn, and is given by
T(x,y)5(12y,12x), with T251, where1 is the identity
operator in R2, and such that T+M0+T(n,x,y)
5M0

21(n,x,y). If we consider periodic boundary condition
the invariant measure is uniform and has Lyapunov ex
nents

l1
~0!52l2

~0!5 ln2. ~2!

Next we suppose that the particles are also acted upo
a thermostated electric field, whose action we now mod
Our final map will then be a composition~to be explained
below! of the field map~3! with the multibaker map~1!.

The modeling of the field map can be done by consider
the action of a thermostated electric field on a~continuously!
moving particle, where the thermostat maintains a cons
364 ©1999 The American Physical Society
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kinetic energy for the particle. The equation of motion o
particle in such a field is given by@1,2#

dpW

dt
5qEW 2qS EW •pW

p2 D pW .

If u is the angle that the velocity of the particle makes w
respect to the direction of the electric field, thenu changes in
time asu̇52qEsinu/p, with solution

u~ t !52arctanF tanS u~0!

2 DexpS 2
qE

p
t D G .

A time discretized version of this equation is obtained
defining an angle at discrete timesun5pxn , and lettingxn
satisfy

xn115
2

p
arctanF tanS pxn

2 De2aG .
Here xnP@0,1# and a5 (qE/p) t, with t the time step,
which for the time being we set equal to unity. Note that
restricted our attention to anglesuP@0,p#, taking advantage
of the symmetryu↔2u.

We now introduce a one parameter family of maps of
unit interval onto itself by
e

wa~x!5
2

p
arctanF tanS px

2 De2aG . ~3!

We note the following property:

wa~x!512w2a~12x!, ~4!

which implies the time-reversal symmetry

T+~wa ,1!+T~x,y!5„x,wa
21~y!…, ~5!

whereT is defined above, and the operator (wa ,1) acts on a
point (x,y), say to produce„wa(x),y…, and we have denoted
the identity operator acting on they coordinate by1. We also
point out the fact that the mapwa(x) has the property, unde
successive iterations, that

wa„wa~x!…5w2a~x!, ~6!

which shows that the field map is a good discretization o
continuous process in time.

We can now construct the following nonlinear~or field
driven! multibaker map as a time-reversal symmetric co
position of the multibaker map~1! with the field map~3! :

Ma~n,x,y!5~1,1,wa!+M0+~1,wa ,1!~n,x,y!, ~7!

which takes the explicit form
ld
r to Fig.
is

r

ensity in
Ma~n,x,y!5H Xn21,2wa~x!,waS y

2D C, 0<x,w2aS 1

2D ,

Xn11,2wa~x!21,waS y11

2 D C, w2aS 1

2D<x,1.

~8!

The leftmost identity operators in each of the field maps in Eq.~7! act on the cell indexn and express the fact that the fie
maps do not change the value of the cell index. Only the baker map moves points from one cell to the next. We refe
5 at the end of this paper for an illustration of the projection ofMa along thex interval. The time-reversal symmetry of th
mapT+Ma+T(x,y)5Ma

21(x,y), with T defined as above, follows straightforwardly from Eqs.~4! and ~5!.

III. HYPERBOLIC REGIME

As long asa, ln(2), Ma is expanding along thex direction, i.e.,

]Max

]x
.1,

so that standard theorems guarantee the existence and uniqueness of an SRB measure@19#. In this section we solve for the
invariant density and give an analytic expression of this invariant measure.

We want to find the stationary eigenfunction, equivalently, the invariant density,r(n,x,y), of the Perron-Frobenius operato
for a system with periodic boundary conditions. This implies thatr does not depend uponn, but only onx,y and satisfies the
equation

r~x,y!5H w2a8 S x

2Dw2a8 ~y!rXw2aS x

2D ,2w2a~y!C, 0<y,waS 1

2D ,

w2a8 S x11

2 Dw2a8 ~y!rXw2aS x11

2 D ,2w2a~y!21C, waS 1

2D<y,1 ,

~9!

where the prime denotes the derivative with respect to the argument. We solve this equation by expanding the d
powers of the field parameter,
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r~x,y!.11ar~1!~x,y!1a2r~2!~x,y!1o~a3!. ~10!

For smalla, the low field regime, we expandwa in powers of the field parameter:

wa~x!.x2
a

p
sin~px!1

a2

4p
sin~2px!1o~a3!. ~11!

The first order correction to the invariant density is found by decomposing it in Fourier modes:

r~1!~x,y!5 (
k50

`

@ak~y!cos~2pkx!1bk~y!sin~2pkx!#. ~12!

Inserting the expansion forr, Eq.~10!, and Eq.~12! in Eq. ~9!, we can find theak’s andbk’s. However, as a result of the phas
space contraction, the density is a singular function of they coordinate so that we cannot represent theak’s andbk’s in terms
of standard functions@20#. For our purposes, it is enough to perform a partial integration of the density along they direction
so as to obtain continuous coefficients for the Fourier modes. We thus define

Ak~y!5E
0

y

ak~y8!dy8, Bk~y!5E
0

y

bk~y8!dy8, ~13!

which, to lowest order ina, are found to satisfy the recursion relations

A0~y!55
1

2
A0~2y!1

2y

p
1

1

p
sin~py!1

1

p (
k8 odd

Bk8~2y!

k8
, 0<y,

1

2
,

1

2
A0~2y21!1

2~12y!

p
1

1

p
sin~py!1

1

p (
k8 odd

S Bk8~1!

k8
2

Bk8~2y21!

k8
D ,

1

2
<y,1 .

~14!

Ak~y!55
1

2
A2k~2y!2

y

p~4k221/4!
2

2

p (
k8 odd

k8

4k22k82
Bk8~2y!, 0<y,

1

2
,

1

2
@A2k~1!1A2k~2y21!#2

12y

p~4k221/4!
2

2

p (
k8 odd

k8

4k22k82
@Bk8~1!2Bk8~2y21!#,

1

2
<y,1 .

~15!

Bk~y!55
1

2
B2k~2y!1

4ky

p~4k221/4!
1

4k

p (
k8 odd

1

4k22k82
Ak8~2y!, 0<y,

1

2
,

1

2
@B2k~1!1B2k~2y21!#1

4ky

p~4k221/4!
1

4k

p (
k8 odd

1

4k22k82
@Ak8~1!2Ak8~2y21!#,

1

2
<y,1.

~16!

In particular, fory51, we findAk(1)5A2k(1) andBk(1)5B2k(1)1 4k/p(4k221/4) , whose solutions are, respectivel

Ak~1!50, Bk~1!5
4

p (
n50

`
2nk

22~n11!k221/4
. ~17!

Therefore the projection ofr (1)(x,y) along thex direction is a smooth function ofx given by

r~1!~x![E
0

1

r~1!~x,y!dy5 (
k51

`

Bk~1!sin~2pkx!. ~18!

To compute the coefficientsAk(y) andBk(y) numerically, we need to select a cutoff valuekmax of k beyond which we set al
the coefficients to be zero. In Figs. 1–3, we showA0 and the first fiveAk’s and Bk’s, respectively, computed by settin
kmax5250.

Although we have found the invariant density only to first order, we can now compute the corrections to the Lya
exponents to second order ina. For l1 , we obtain
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l15E
0

1

dxE
0

1

dyr~x,y!ln@2wa8 ~x!# ,

5 ln~2!2a2S 1

4
1E

0

1

dxr~1!~x!cos~px! D ,

5 ln~2!2a2S 1

4
1

4

p(
k51

`
kBk~1!

4k221
D ,

5l1
~0!2a2~0.666 151 361027!. ~19!

Here we used the normalization condition forr(x,y) which requires that

E
0

1

dxE
0

1

dyr~2!~x,y!50. ~20!

To computel2 , we need the full expression ofr (1), Eqs.~12!–~16!:

l25E
0

w2a~1/2!

dxE
0

1

dyr~x,y!lnS 1

2
wa8 ~y/2! D1E

w2a~1/2!

1

dxE
0

1

dyr~x,y!lnS 1

2
wa8 @~y11!/2# D ,

5w2a(1/2)S 2 ln~2!2
2a

p
2

a2

4 D2a2E
0

1/2

dxE
0

1

dyr1~x,y!cos~py/2!

1@12w2a~1/2!#S 2 ln~2!1
2a

p
2

a2

4 D1a2E
1/2

1

dxE
0

1

dyr1~x,y!sin~py/2! ,

5l2
~0!2a2S 1

4
1

4

p2
1

1

p (
k odd

Bk~1!

k
1

p

4E0

1

dyA0~y!@sin~py/2!1cos~py/2!#

1
1

2E0

1

dy (
k odd

Bk~y!

k
@sin~py/2!2cos~py/2!# D . ~21!
u

x-

u

,

,

of
al

its
It is not straightforward to compute these integrals n
merically because of the irregularity of the functions~14!–
~16! and the number of different terms involved in their e
pressions. We can nevertheless estimate Eq.~21! within
some good accuracy. To this purpose, we proceed by a n
ber of algebraic manipulations.

We first substitute forBk(y) the expression

Bk~y!5yBk~1!1k fk~y!, ~22!

where the functionsf k(y) are found to satisfy the relations

f k~y!5 f 2k~2y!1
4

p (
k8 odd

1

4k22k82
Ak8~2y! , ~23!

for 0<y,1/2, and f k(y) is odd with respect to 1/2, viz.
f k(y)52 f k(12y).

In terms of these, we have

Ak~y!5
1

2
A2k~2y!2

2

p (
k8 odd

k82

4k22k82
f k8~2y!

2
y

pS 4

16k221
1 (

k8 odd

4k8

4k22k82
Bk8~1!D ~24!
-

m-

for 0<y,1/2, andAk(y) is even with respect to 1/2, viz.
Ak(y)5Ak(12y).

We can now find an upper bound on the magnitude
f k(y). Indeed,Ak(y) is everywhere negative and is minim
at y51/2 ~see Fig. 2!. Thus

uAku<
1

2pS 4

16k221
1 (

k8 odd

4k8

4k22k82
Bk8~1!D . ~25!

Now, f k(y) is negative between 0 and 1/2 and reaches
minimum aty51/4. Thus, from Eqs.~23! and ~25!,

u f ku< f k
max[

2

p2 (
k8 odd

1

4k22k82

3S 4

16k221
1 (

k8 odd

4k8

4k22k82
Bk8~1!D . ~26!

Next, we rewriteA0(y), Eq. ~14!, in terms of its Fourier
modes:

A0~y!5
1

p(
k50

`

Gkcos~2pky!1Hksin~2pky!. ~27!
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We find

G0511
4

p
1 (

k8 odd

Bk8~1!

k8
,

Gk52
4

p2k2S 11 (
k8 odd

Bk8~1!

k8
D 2

4

p~4k221!

12 (
k8 odd

E
0

1

dy fk8~y!cos~kpy!, k odd ,

Gk5
1

2
Gk/22

4

p~4k221!
, k even , ~28!

Hk50, k odd ,

Hk52
4

pk (
k8 odd

Bk8~1!

k8
12 (

k8 odd
E

0

1

dy fk8~y!sin~kpy!,

k even.

FIG. 1. A0(y) computed with a cutoff valuekmax5250.

FIG. 2. The first fiveAk(y) computed with a cutoff valuekmax

5250.
Therefore and with the help of Eqs.~25! and ~26!,

E
0

1

dy (
k odd

Bk~y!

k
@sin~py/2!2cos~py/2!#

5
2

pS 4

p
21D (

k odd

Bk~1!

k

1 (
k odd

E
0

1

dy fk~y!@sin~py/2!2cos~py/2!# ,

5
2

pS 4

p
21D (

k odd

Bk~1!

k
1OS 4

p
~A221! f k8

maxD ~29!

and

E
0

1

dyA0~y!@sin~py/2!1cos~py/2!#

5
4G0

p2
2

4

p2 (
k51

`
Gk

16k221
,

5
4G0

p2
2

4

p2 (
k odd

S (
n50

`
1

2n

Gk

22n14k221

1 (
n51

`

(
j 50

n21
1

2 j

g2n2 j k

22n14k221
D ,

5
4G0

p2
2

4

p2 (
k odd

S (
n50

`
1

2n

Gk
~0!

22n14k221

1 (
n51

`

(
j 50

n21
1

2 j

g2n2 j k

22n14k221
D

1OS 4

p2 (
k odd

(
n50

`
1

2n21

1

22n14k221

2

p (
k8 odd

f k8
max

k8
D ,

~30!

where we introduced the notations

FIG. 3. The first fiveBk(y) computed with a cutoff valuekmax

5250.
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Gk
~0!52

4

p2k2S 11 (
k8 odd

Bk8~1!

k8
D 2

4

p~4k221!
, ~31!

and

g2n2 j k52
4

p~22~n2 j 11!k221!
. ~32!

Grouping Eqs.~29! and ~30! together with Eq.~21!, we
can give an estimate of the second order correction to
negative Lyapunov exponent by performing straightforwa
numerical summations: we find

l25l2
~0!2a2@1.99376O~0.04!#. ~33!

In Fig. 4 we compare the values~19! and ~33! of the
second order corrections to the Lyapunov exponents to
merically computed ones.

In the next section we take the macroscopic limit a
relate the sum of the Lyapunov exponents to the drift vel
ity and the zero-field diffusion coefficient.

IV. MACROSCOPIC LIMIT

In order to take the macroscopic limit of this diffusiv
process, we consider the functionWt(n) which is defined to
be the total probability of finding a particle in celln at time
t, and is given by

Wt~n!5E
0

1

dxE
0

1

dyr t~n,x,y!, ~34!

where r t(n,x,y) is the time-dependent density of the e
tended version ofMa and whose time evolution is derive
by generalizing Eq.~9! in a straightforward way. Once w
have eliminated the internal variables, (x,y), we no longer
have a deterministic process, but instead have a random

FIG. 4. A comparison of the values of the second order corr
tions of the Lyapunov exponents computed from Eqs.~19! and~21!
~solid lines! and by following a trajectory of 10 000 steps for te
values ofa ranging from 0 to 0.1~3’s correspond to the positive
Lyapunov exponent,1’s to the negative one!.
e
d

u-

-

ro-

cess which should, in a macroscopic limit, be described b
suitable Fokker-Planck equation with a drift term, represe
ing the effect of the external field. The macroscopic limit
taken by scaling the space and time parameters, and
taking an appropriate scaling limit. This procedure was
scribed for models of this type by Te´l, Vollmer, and Brey-
mann@11,12#, and here we simply outline the process.

We have previously introduced the time stept, and we
replace the timest andt11 in the Frobenius-Perron equatio
by Tt and Tt1t, respectively, whereT@1. Similarly, we
scale the length of the elementary cells,n, by making them
have a lengtha on a side. We then replacen andn11 in the
Frobenius-Perron equation byNa and Na1a, respectively,
whereN@1. Also thex andy variables have to be scaled b
the factora and* by a2, as well.

We can now proceed to the derivation of the Fokk
Planck equation from the Frobenius-Perron equation
r t(n,x,y). We obtain a Fokker-Planck equation for a fie
driven random walk by considering the differenc
WTt1t(Na)2WTt(Na).

Using Eqs.~8! and ~9!, we find

WTt1t~Na!5E
0

w2a~1/2!

dxrTt~Na1a,x!

1E
w2a~1/2!

1

dxrTt~Na2a,x!,

where rTt(Na,x)5*0
1dyrTt(Na,x,y). We have scaledx

and y so that their values are in the interval 0<x, y<1.
Therefore

WTt1t~Na!2Wt~Na!

5E
0

w2a~1/2!

dx@rTt~Na1a,x!2rTt~Na,x!#

1E
w2a~1/2!

1

dx@rTt~Na2a,x!2rTt~Na,x!#.

~35!

Expanding rTt(Na6a,x) about rTt(Na,x) and
WTt1t(Na) about WTt(Na), respectively, and introducing
the coordinateX5Na, and the timet5Tt, we get

]Wt~X!

]t
5

a

t

]

]XS E
0

w2a~1/2!

dxr t~X,x!

2E
w2a~1/2!

1

dxr t~X,x! D 1a2
1

2t

]2Wt~X!

]X2
1•••

52 v̄ t~X!
]Wt~X!

]X
1

a2

2t

]2Wt~X!

]X2
1•••. ~36!

The drift velocity is given by

-



370 PRE 59T. GILBERT, C. D. FERGUSON, AND J. R. DORFMAN
v̄ t~X![

a

t S ]

]XD S 2E
0

w2a~1/2!

dxr t~X,x!1E
w2a~1/2!

1

dxr t~X,x! D
S ]

]XD E
0

1

dxr t~X,x!

. ~37!
m

y
lu
at

ly

it
ly

d
o

we
uc
of
o

i
d
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m
n
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pa-
To proceed further, we need to take the macroscopic li
wherea→0, t→0, a2/2t 5D, and v̄ is finite and nonzero.
This implies that the electric fieldE becomes infinite asa22.

For long timest we are going to replace the drift velocit
in the Fokker-Planck equation by its stationary state va
Supposet is large enough that we are nearing a steady st
Then in the limit of smalla andt, we may write the solution
of the Frobenius-Perron equationr t(X,x) in Eq. ~37! as
Wt(X)r(x) wherer(x) is determined by an equation easi
obtained by integrating the equation~9! overy, Eq. ~18!, and
Wt(X) is close to, but not quite, a constant. Then theX
dependence drops out in the expression for the drift veloc
and we find that the stationary state drift velocity is simp
~assuming that the density is normalized to a unit cell!

v̄5
a

t S 2E
0

w2a~1/2!

dxr~x!1E
w2a~1/2!

1

dxr~x! D . ~38!

Equation~36! is the Fokker-Planck equation correspon
ing to a stochastic diffusive system with a drift. In the case
periodic boundary conditions that we consider here,
know from thermodynamics that the rate of entropy prod
tion in the stationary state is due solely to the existence
current driven by the external field and for which the rate
entropy production is given by

s5
v̄2

D
, ~39!

where the zero-field diffusion coefficient for this process
D5 a2/2t. We mention that in the limit of zero field, an
periodic boundary conditions, the entropy production in
stationary state vanishes, since in this limit, there is
steady state drift, and the distribution functionr(X,x) is
constant both inX and inx.

With the stationary state density~18! computed in the
preceding section, the drift velocity~38! is found to be

v̄52
2aa

pt S 11 (
k odd

Bk~1!

k D 52
aa

t
~1.152 178 13!.

~40!

Hence, the entropy production rate is, Eqs.~39!–~40!,

s52.655 028 89
a2

t
. ~41!

According to the usual arguments for thermostated syste
one expects that the rate of phase space contraction give
the negative of the sum of Lyapunov exponents should
equal to the macroscopic rate of entropy production@10,13#.
For our case, it is possible to verify this relation analytical
it

e.
e.

y,

-
f

-
a
f

s

e
o

s,
by
e

,

since we have been able to calculate all of the relevant qu
tities. The phase space contraction rate is given by

2~l11l2!5@2.666O~0.04!#
a2

t
, ~42!

and Eqs.~41! and~42! give consistent values. Thus our fie
driven random walk model has a well behaved macrosco
limit, provides an example of the correspondence betw
the macroscopic and microscopic relations for entropy p
duction, and is analytically tractable.

V. CONCLUSIONS AND DISCUSSION

In this paper we have shown that it is possible to constr
a nonlinear version of the multibaker map~i.e. it shares the
topology and time-reversal symmetry of the original mul
baker but is not piecewise linear! that simulates the action o
an external field on a diffusive process. The field curves
branches of the map and is responsible for the phase s
contraction that induces a stationary state on an attracto~it
fills the whole phase space but its information dimens
@14# is fractional as a consequence of the difference betw
the second order corrections to the Lyapunov exponents!.

One of the motivations of this work was to provide a
analytically tractable map which shows some of the prop
ties of the periodic Lorentz gas where the particle mov
among the scatterers in a thermostated electric field.
structure of our nonlinear baker map is sufficiently simp
that we were able to compute analytically the stationary s
SRB measure using a perturbation expansion in the field

FIG. 5. Ma projected along thex interval for a50.5 ~dashed
line!, ln(2) ~solid line!, and 1 ~long-dashed line!. The origin goes
from repelling to attractive asa increases above ln(2).
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rameter. This allowed us to compute the positive and ne
tive Lyapunov exponents, whose values we showed are
sistent with that of the drift velocity. We also were able
compute the irreversible entropy production and showed
it is indeed given, apart from some factors, by the sum of
Lyapunov exponents.

We remark that at values of the field parameter larger t
ln(2), the map loses its hyperbolicity. This is illustrated
Fig. 5. In fact (0,0) becomes an attractive fixed point of t
reduced map, which means that, on the lattice, all partic
eventually move ballistically around the ring towards d
creasingn’s. The casea5 ln(2) is of particular interest. In-
deed, the origin is an intermittent fixed point and, as a c
sequence, points can spend arbitrary long times in
vicinity. This can be seen to give rise to anomalous diffus
@21,22#.

We regard the model given here as the simplest of a c
of similar models which can be generated by varying
additional parameter modeling a magnetic field. Elsewh
@23# we will describe this class of models in much mo
detail, because they show a wide variety of features bot
the hyperbolic and nonhyperbolic regions, including s
quences of period adding bifurcations.

In a subsequent paper@24# we plan to consider boundar
conditions other than periodic. It is in particular an importa
question to check whether, with flux boundary conditio
-
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,

the chain sustains a stationary state with an almost lin
gradient of density. As we showed in another paper@13#,
some other models of field driven multibaker maps fail
have this behavior in a large system limit and, as a con
quence, do not have physically relevant thermodynamics~the
entropy production rate depends on the choice of the pa
tion!.

Another interesting perspective will be to calculate no
linear corrections to the diffusion coefficient so we can
beyond the linear response theory. As shown by other
thors@18#, relevant tools for this study are the zeta functio
and Pollicott-Ruelle resonances. Computing the first or
corrections to the eigenvalue spectrum of the Perr
Frobenius operator will be an important step towards und
standing nonlinear diffusion for this model.
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